Two preferentially expressed proteins protect vascular endothelial cells from an attack by peptide-specific CTL.
نویسندگان
چکیده
Vascular endothelial cells (EC) are an exposed tissue with intimate contact with circulating Ag-specific CTL. Experimental in vitro and clinical data suggested that endothelial cells present a different repertoire of MHC class I-restricted peptides compared with syngeneic leukocytes or epithelial cells. This endothelial-specific peptide repertoire might protect EC from CTL-mediated cell death. The HLA-A*02-restricted peptide profile of human EC and syngeneic B lymphoblastoid cells was biochemically analyzed and compared. For EC selective peptides, source protein expression, peptide binding affinity, and peptide-HLA-A*02 turnover were measured. The significance of abundant peptide presentation for target cell recognition by immunodominant CTL was tested by small interfering RNA treatment of EC to knock down the source proteins. High amounts of two peptides, PTRF(56-64) and CD59(106-114), were consistently detected in EC. This predominance of two endothelial peptides was explained by cell type-specific source protein expression that compensated for poor HLA-A*02 binding affinity and short half-live of peptide/HLA-A*02 complexes. Knocking down the source proteins containing the abundant endothelial peptide motifs led to a nearly 100-fold increase of surface expression of SMCY(311-319), an immunodominant minor histocompatibility Ag, as detected by cytotoxicity assays using SMCY(311-319)-specific CTL. We conclude that EC express and present preferentially two distinct HLA-A*02-restricted peptides at extraordinary high levels. These abundant self-peptides may protect EC from CTL-mediated lysis by competing for HLA-A*02 binding sites with immunodominant scarcely expressed antigenic peptides.
منابع مشابه
Identification of Mycobacterium tuberculosis CTL Epitopes Restricted by HLA-A*0201 in HHD Mice
CD8+ T cells are thought to play an important role in protective immunity to tuberculosis. The major histocompatibility complex class I subtype HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A*0201 transgenic, H-2Db/mouse beta2-microglobulin double-knockout mice (HHD) which express human HLA-A*0201 but no mouse class I, was shown t...
متن کاملMesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor –A
Background: Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). Methods: VEGF-A was expressed in E. coli BL21 (DE3) and BL21...
متن کاملDifferentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells
Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...
متن کاملApplication of FITC for detecting the binding of antiangiogenic peptide to HUVECs
Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...
متن کاملProkaryotic Expression of Influenza A virus Nucleoprotein Fused to Mycobacterial Heat Shock Protein70
Background and Aims: The novel approaches in influenza vaccination have targeted more conserved viral proteins such as nucleoprotein (NP) to provide cross protection against all serotypes of influenza A viruses. Influenza specific cytotoxic T lymphocytes (CTL) are able to lyse influenza-infected cells by recognition of NP, the major target molecule in virus for CTL responses. On the other hand,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 188 11 شماره
صفحات -
تاریخ انتشار 2012